If y=xsinx, thendydx=
xsinxxcosxlogx+sinxx
xsinxxcosxlogx+cosxx
yxsinxlogx+cosxx
None of these
Explanation for the correct option:
Finding the value of dydx:
The given function is y=xsinx
Apply the log on both sides of the given equation
logy=sinxlogx[∵logab=bloga]
Differentiate both sides of the given equation
1ydydx=sinx×ddxlogx+logxddxsinx[∵ddx(logx)=1x,d(ab)dx=adbdx+bdadx]1ydydx=sinx×1x+logxcosx[∵d(sinx)dx=cosx]dydx=ysinxx+logxcosx=xsinxsinxx+logxcosx[Giveny=xsinx]=xsinxsinx+xlogxcosxx
Hence, the correct option is A.
Complete the Tables
Expression
Term with factor of x
Coefficient of x
3x-5
3x
3
8-x+y
2z-5xz