wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=xtanx+(sinx)cosx, find dydx.

Open in App
Solution

We are given, y=xtanx+(sinx)cosx
let y1=xtanx & y2=(sinx)cosx
we have to find dydx
dydx=dy1dx+dy2dx
So, y1=xtanx
logy1=tanx(logx)
1y1dy1dx=tanxx+(sec2x)(logx)
So, dy1dx=y1(tanxx+(sec2x)(logx))
So, similarly, y2=(sinx)cosx
logy2=cosx(log(sinx))
1y2dy2dx=cosxsinx.cosx+(sinx)(log(sinx))
dy2dx=y2(cotx.cosx(sinx)(log(sinx)))
So, dydx=dy1dx+dy2dx
dydx=(xtanx)(tanxx+(sec2x)(logx))+((sinx)cosx)(cotx.cosx(sinx)(log(sinx)))

1213105_1072163_ans_5f37b74c529d48d6ab553637b3ee8c42.jpg

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon