wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=xx, find d2ydx2.

Open in App
Solution

y=xx
logy=xlogx
Differentiating w.r.t. x, we get,
1ydydx=1×logx+x×1x

dydx=y(1+logx)

Differentiating both sides w.r.t. x, we get,
d2ydx2=dydx(1+logx)+yddx(1+logx)

d2ydx2=dydx(1+logx)+y×1x=y(1+logx)2+yx

d2ydx2=xx[(1+logx)2+1x]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon