wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=xx, then prove that d2ydx21y(dydx)2yx=0.

Open in App
Solution

We have,
y=xx

On taking logarithm both sides, we get
lny=ln(xx) ............(1)

lny=xlnx

On differentiating w.r.t x, we get
1ydydx=x×1x+lnx×1

1ydydx=1+lnx

dydx=y(1+lnx) ............(2)

On differentiating w.r.t x, we get
d2ydx2=dydx(1+lnx)+y(0+1x)

d2ydx2=dydx(1+lnx)+(yx)

d2ydx2=dydx×1ydydx+(yx) from equation (2)

d2ydx2=1y(dydx)2+yx

d2ydx21y(dydx)2yx=0

Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon