If y=(xx)x then dydx=
We have,
y=(xx)x
y=xx2
On taking log both sides, we get
logy=x2logx …… (1)
On differentiating w.r.t x, we get
1ydydx=x2x+logx(2x)
1ydydx=x+2xlogx
dydx=y(x+2xlogx)
dydx=(xx)x(x+2xlogx)
dydx=x(xx)x(1+2logx)
Hence, this is the answer.