If y=xlogx(a+bx) , then xnd2ydx2=(xdydx−y)m, where:
A
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A y=xlogx(a+bx) =xlogx−xlog(a+bx) dydx=(logx)+1−log(a+bx)−bxa+bx d2ydx2=1x−ba+bx−b(a+bx)−b2x(a+bx)2 =a2x(a+b)2 xnd2ydx2=a2xn−1(a+vx)2 (xdydx−y)m=amxm(a+bx)m comparingusegetm=2,n=3