wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=xna coslogx+b sinlogx, prove that x2d2ydx2+1-2nxdydx+1+n2y=0.

Disclaimer: There is a misprint in the question. It must be x2d2ydx2+1-2nxdydx+1+n2y=0 instead of x2d2ydx2+1-2ndydx+1+n2y=0.

Open in App
Solution

We have,y=xna coslogx+b sinlogx ...(1)Differentiating y with respect to x, we getdydx=nxn-1a coslogx+b sinlogx+xn-a sinlogx×1x+b coslogx×1x =nxxna coslogx+b sinlogx+xn-1-a sinlogx+b coslogx =nxy+xn-1-a sinlogx+b coslogx From (1)xn-1-a sinlogx+b coslogx=dydx-nxy ...(2)Differentiating dydx with respect to x, we getd2ydx2=nxdydx-nyx2+n-1xn-2-a sinlogx+b coslogx+xn-1-a coslogx×1x-b sinlogx×1x =nxdydx-nyx2+n-1xn-1x-a sinlogx+b coslogx-xnx2a coslogx+b sinlogx =nxdydx-nyx2+n-1xdydx-nxy-yx2 From (1) and 2 =nxdydx-nyx2+n-1xdydx-nn-1yx2-yx2 =dydxn+n-1x-n+n2-n+1yx2 =2n-1xdydx-n2+1yx2x2d2ydx2-x2n-1dydx+n2+1y=0Hence, x2d2ydx2+1-2nxdydx+1+n2y=0.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon