If y=xx, then dydx is
xxlogex
xx1+1x
xx(1+logx)
xxlogx
Finding the value of dydx:
The given function is y=xx
Taking log on both sides,
logy=xlogx
Differentiating with respect to x.
1ydydx=logx+x×1x[∵ddxlogx=1x,d(a·b)dx=adbdx+bdadx]=1+logxdydx=y[1+logx]=xx[1+logx]
Hence, the correct option is C.
Fill in the blanks :
If x,y,z are three integer, then(x+y)+(___)=(____)+(____)