Equation of Tangent at a Point (x,y) in Terms of f'(x)
If y=yx is th...
Question
If y=y(x) is the solution of x∫0tydt=x2+y2 and y(0)=1, where point (a,3) satisfies the curve y=y(x), then the value of a2=
Open in App
Solution
Given: x∫0tydt=x2+y2
differentiating both sides w.r.t. x, ⇒xy=2x+2ydydx⇒2yy−2dy=xdx
integrating both sides, ⇒∫(2+4y−2)dy=∫xdx⇒2y+4ln|y−2|=x22+C⇒x2+c=4(y+2ln|y−2|)
As, y(0)=1;c=4
Now, point (a,3) lies on this curve ⇒a2+4=4(3+0)⇒a2=8