The correct option is C y(3)=3
Given : x2(xdx+ydy)+2y(ydx−xdy)=0
Put x=rcosθ,y=rsinθ
⇒x2+y2=r2,xdx+ydy=rdr and xdy−ydx=r2dθ
the equation becomes,
r2cos2θ(rdr)−2rsinθ(r2dθ)=0dr−2secθtanθdθ=0
integrating both sides, we get
r−2secθ=c⇒√x2+y2−2√x2+y2x=c⇒(x2+y2)(x−2)2=Cx2; (C=c2)⇒y=√Cx2(x−2)2−x2
⇒y(0)=0
and y(1)=1 (given)
⇒C=2
So, y(3)=√18−9=3