(y−z)∝1x⇒y−z=k1⋅1x (where k1≠0= variation constant.)
⇒k1=x(y−z)......(1)
(z−x)∝1y,∴(z−x)=k2⋅1y (where k2≠0= variation constant.)
∴k2=y(z−x)......(2)
Also, (x−y)∝1z,∴x−y=k3⋅1z (where k3≠0= variation constant.)...(3)
∴k3=z(x−y)
Now, adding (1)+(2)+(3) we get,
k1+k2+k3=x(y−z)+y(z−x)+z(x−y)=xy−xz+yz−xy+zx−yz=0∴k1+k2+k3=0.
Hence the sum of three variation constants =0.