Let the given polynomials are p(x)=3x3+ax2+3x+5 and f(x)=4x3+x2−2x+a
According to question p(2)=f(2)
3(2)3+a(2)2+3(2)+5=4(2)3+(2)2−2(2)+a
⇒3×8+4a+6+5=32+4−4+a
⇒24+4a+11=32+a
⇒4a−a=32−35
⇒3a=−3
⇒a=−1
As the remainder is same, so p(2) or f(2) would be same when a=−1
p(2)=3(2)3+(−1)(2)2+3×2+5[∴a=−1]
=24−4+6+5
=35−4=31
Thus, a=−1 and p(2) or f(2)=31