If |z1−1|<2,|z2−2|<1, then maximum possible integral value of |z1+z2| is
If |z1|=|z2|=|z3|=|z4|=1 and z1+z2+z3+z4=0 then least value of the expression E=|z1−z2|2+|z2−z3|2+|z3−z4|2+|z4−z1|2 is
|z1|=1,|z2|=2,|z3|=3and|9z1z2+4z1z3+z2z3|=12, then the value of |z1+z2+z3| is equal to