If z1+a=b+ic and a2+b2+c2=1, then 1+iz1−iz is equal to
a+ib1+c
b−ic1+a
a+ic1+b
None of these
Explanation for the correct option:
Finding the value of 1+iz1−iz:
The given equations are,
z1+a=b+ic....i
a2+b2+c2=1...ii
Now,
1+iz1−iz=1+ib+ic1+a1−ib+ic1+a[fromi]=1+a−c+ib1+a+c−ib=1+a−c+ib1+a+c+ib1+a+c2+b2[multiplybyconjugate,a+ba-b=a2-b2,i2=-1]=1+2a+a2−b2−c2+2ib+2iab1+a2+c2+b2+2ac+2a+c[∵a+b+c2=a2+b2+c2+2ab+2bc+2ca]
=2a+2a2+2ib+2iab2+2ac+2(a+c)[fromii]
=a+a2+ib+iab1+ac+(a+c)=aa+1+iba+1a+1c+1=a+ibc+1
Hence, the correct option is A.