The correct options are
A |w1|=1 B |w2|=1 C Re(w1¯¯¯¯¯¯w2)=0Let, z1=a+ib and z2=c+id such that |z1|=1⇒√a2+b2=1⇒a2+b2=1......(1)
and |z2|=1⇒√c2+d2=1⇒c2+d2=1......(2).
Also, Re(z1¯¯¯¯¯z2)=0
or, Re{ac+bd+i(bc−ad)}=0
or, ac+bd=0
or, a=−bdc.....(3).
Using (3) in (1) we get,
b2d2c2 +b2=1
or, b2(d2+c2)c2=1
or, b2=c2 [Using (2)]........(4).
Similarly using (3) in (2) and using (1) we shall have
a2=d2.........(5).
Now, according to the problem w1=a+ic and w2=b+id.
∴|w1|=√a2+c2=√a2+b2=1 [Using (4)].
∴|w2|=√b2+d2=√b2+a2=1 [Using (5)].
Now, w1¯¯¯¯¯¯w2=(a+ic)(b−id)=(ab+cd)+i(bc−ad).
∴Re(w1¯¯¯¯¯¯w2)=ab+cd=−b2dc +cd=d(c2−b2)c =0 [Using (3) and (4)].
So, option (A), (B) and (C) are true.