wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z1=a+ib and z2=c+id are complex numbers such that |z1|=|z2|=1 and R(z1¯z2)=0, then the pair of numbers w1=a+ic and w2=b+id satisfies

A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D
Since,|z1|=|z2|=1,we havez1=cosθ1+isinθ1,z2=cosθ2+isinθ2where θ1=arg(z1)and θ2=arg(z2)Also,z1=a+ib and z2=c+id.Therefore a=cosθ1,b=sinθ1,c=cosθ2and d=sinθ2 Also,R(z1¯z2)=0R[(cosθ1+isinθ1)(cosθ2isinθ2)]=0R[(cos(θ1θ2)+isin(θ1θ2))]=0cos(θ1θ2)=0θ1θ2=π2θ1=θ2+π2 Now,w1=a+ic=cosθ1+icosθ2=cos1+isinθ1|w1|=1Similarly,|w2|=1Next w1¯w2=(cosθ1+isinθ1)(cosθ2isinθ2)=cos(θ1θ2)+isin(θ1θ2)|w1¯w2|=1Finally,R(¯w1w2)=R(w1¯w2)=R[(cosθ2+isinθ2)(cosθ1isinθ1)]=R[cos(θ2θ1)+isin(θ2isinθ1)]=cos(θ2θ1)=cos(π2)=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Modulus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon