If z1=a+ib and z2=c+id are complex numbers such that |z1|=|z2|=1 and R(z1¯z2)=0, then the pair of numbers w1=a+ic and w2=b+id satisfies
A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D Since,|z1|=|z2|=1,wehavez1=cosθ1+isinθ1,z2=cosθ2+isinθ2whereθ1=arg(z1)andθ2=arg(z2)Also,z1=a+ibandz2=c+id.Thereforea=cosθ1,b=sinθ1,c=cosθ2andd=sinθ2Also,R(z1¯z2)=0⇒R[(cosθ1+isinθ1)(cosθ2−isinθ2)]=0⇒R[(cos(θ1−θ2)+isin(θ1−θ2))]=0⇒cos(θ1−θ2)=0⇒θ1−θ2=π2⇒θ1=θ2+π2Now,w1=a+ic=cosθ1+icosθ2=cos1+isinθ1⇒|w1|=1Similarly,|w2|=1Nextw1¯w2=(cosθ1+isinθ1)(cosθ2−isinθ2)=cos(θ1−θ2)+isin(θ1−θ2)⇒|w1¯w2|=1Finally,R(¯w1w2)=R(w1¯w2)=R[(cosθ2+isinθ2)(cosθ1−isinθ1)]=R[cos(θ2−θ1)+isin(θ2−isinθ1)]=cos(θ2−θ1)=cos(−π2)=0