The correct option is D |z1+z2|+|z1−z2|
Consider {∣∣∣z1+√z21−z22∣∣∣+∣∣∣z1−√z21−z22∣∣∣}2
=∣∣∣z1+√z21−z22∣∣∣2+∣∣∣z1−√z21−z22∣∣∣2 +2∣∣∣z1+√z21−z22∣∣∣∣∣∣z1−√z21−z22∣∣∣
Using |z1+z2|2+|z1−z2|2=2|z1|2+2|z2|2 and |z1z2|=|z1||z2|, given expression is equal to
2|z1|2+2|z21−z22|+2|z21−(z21−z22)|
=2|z1|2+2|z1−z2||z1+z2|+2|z22|
=2|z21|+2|z22|+2|z1−z2||z1+z2|
Using again |z1+z2|2+|z1−z2|2=2|z1|2+2|z2|2, the expression becomes
|z1+z2|2+|z1−z2|2+2|z1+z2||z1−z2|
={|z1+z2|+|z1−z2|}2
So, {∣∣∣z1+√z21−z22∣∣∣+∣∣∣z1−√z21−z22∣∣∣}2={|z1+z2|+|z1−z2|}2
Taking square root both sides, we get
∣∣∣z1+√z21−z22∣∣∣+∣∣∣z1−√z21−z22∣∣∣=|z1+z2|+|z1−z2|
Alternate :
Put z1=a, a>0 and z2=0 in the expression,
∣∣∣z1+√z21−z22∣∣∣+∣∣∣z1−√z21−z22∣∣∣=2a
Also, |z1+z2|+|z1−z2|=2a