If z1 and z2 are complex numbers such that 2z13z2 is purely imaginary number, then find ∣∣z1−z2z1+z2∣∣
Given, z1 and z2 are complex numbers, such that 2z13z2 is purely imaginary.
∴ 2z13z2=yi, y∈R ⇒ z1z2=32yi [2]
Now ∣∣z1−z2z1+z2∣∣=∣∣ ∣∣z1z2−1z1z2+1∣∣ ∣∣=∣∣∣32yi−132yi+1∣∣∣=∣∣3yi−23yi+2∣∣=√9y2+4√9y2+4=1 [2]