z2+z=i¯z
⇒z(z+1)=i¯z …(1)
Taking modulus both the sides, we get
⇒|z||z+1|=|z|
⇒|z+1|=1 (∵|z|≠0)
⇒(z+1)(¯z+1)=1
⇒¯z=−zz+1
Multiplying by i both the sides, we get
⇒i¯z=i×−zz+1
⇒z(z+1)=i(−zz+1) [from (1)]
⇒(z+1)2=−i=e−iπ/2⇒z+1=±(e−iπ/2)1/2=±e−iπ/4
⇒z+1=±1−i√2
⇒z1=1−i√2−1
and z2=−1−i√2−1
∴z1+z2=−2
⇒|z1+z2|=2