The correct option is D True for all z1,z2∈C
Consider, c|z1|2+|z2|2c≥2√|z1|2|z2|2 .....[ A.M ≥ G.M]
⇒c|z1|2+|z2|2c≥2|z1||z2|
⇒−2|z1||z2|≥−c|z1|2−|z2|2c
⇒|z1|2+|z2|2−2|z1||z2|≥|z1|2+|z2|2−c|z1|2−|z2|2c
⇒(|z1|−|z2|)2≥(1−c)|z1|2+(1−1c)|z2|2
Since, |z1−z2|≥|z1|−|z2|
Therefore, |z1−z2|2≥(1−c)|z1|2+(1−1c)|z2|2
Therefore, above inequality is true for all z1 and z2.
Ans: A