The correct options are
A Im(z1z2)=0
D arg(z1z2)=0
We have,
|z1|=|z2|+|z1−z2||z1|−|z2|=|z1−z2|
Squaring both the sides, we get
⇒(|z1|−|z2|)2=|z1−z2|2⇒|z1|2+|z2|2−2|z1||z2|=|z1|2+|z2|2−2|z1||z2|cos(θ1−θ2)
(θ1,θ2 are the arguments of z1 and z2 respectively)
⇒cos(θ1−θ2)=1⇒θ1−θ2=0⇒arg(z1)−arg(z2)=0
⇒arg(z1z2)=0
⇒z1z2 is purely real
⇒Im(z1z2)=0
Alternate Solution
|z1−z2|=|z1|−|z2|
So, z1,z2,0 are collinear and z1,z2 lies on same side of origin
⇒arg(z1)=arg(z2)
⇒argz1−argz2=0
⇒arg(z1z2)=0
So, z1z2=k (k>0)
⇒Im(z1z2)=0