wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z1 and z2 are two non-zero complex numbers such that |z1z2|=||z1||z2|| then arg(z1)arg(z2)=

A
π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 0
Let z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2)
But |z1z2|=||z1||z2||,
|(r1cosθ1r2cosθ2)+i(r1sinθ1r2sinθ2)|=|r1r2|
Squaring both the sides
(r1cosθ1r2cosθ2)2+(r1sinθ1r2sinθ2)2=|r1r2|2
r21+r222r1r2[cosθ1cosθ2+sinθ1sinθ2]=r21+r222r1r2
cos(θ1θ2)=1
θ1θ2=0arg(z1)arg(z2)=0

Alternate Solution
We know that,
|z1z2|2=|z1|2+|z2|22Re(z1¯¯¯¯¯z2) (1)
Also Re(z1¯¯¯¯¯z2)=|z1¯¯¯¯¯z2|cos(arg(z1¯¯¯¯¯z2))
=|z1¯¯¯¯¯z2|cos(argz1+arg¯¯¯¯¯z2)
[|z1z2|=|z1||z2|, |¯¯¯z|=|z|, arg¯¯¯z=argz]
=|z1||z2|cos(argz1argz2)
Now, from equation (1)
|z1z2|2=|z1|2+|z2|22|z1||z2|cos(θ1θ2) (2)
where θ1=arg(z1) and θ2=arg(z2).
We are given that |z1z2|=||z1||z2||
Squaring both the sides
|z1z2|2=||z1||z2||2
From equation (2)
|z1|2+|z2|22|z1||z2|cos(θ1θ2)=|z1|2+|z2|22|z1||z2|
cos(θ1θ2)=1
θ1θ2=0
argz1argz2=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon