The correct option is C 0
Let z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2)
But |z1−z2|=||z1|−|z2||,
⇒|(r1cosθ1−r2cosθ2)+i(r1sinθ1−r2sinθ2)|=|r1−r2|
Squaring both the sides
⇒(r1cosθ1−r2cosθ2)2+(r1sinθ1−r2sinθ2)2=|r1−r2|2
⇒r21+r22−2r1r2[cosθ1cosθ2+sinθ1sinθ2]=r21+r22−2r1r2
⇒cos(θ1−θ2)=1
⇒θ1−θ2=0⇒arg(z1)−arg(z2)=0
Alternate Solution
We know that,
|z1−z2|2=|z1|2+|z2|2−2Re(z1¯¯¯¯¯z2) …(1)
Also Re(z1¯¯¯¯¯z2)=|z1¯¯¯¯¯z2|cos(arg(z1¯¯¯¯¯z2))
=|z1¯¯¯¯¯z2|cos(argz1+arg¯¯¯¯¯z2)
[∵|z1z2|=|z1||z2|, |¯¯¯z|=|z|, arg¯¯¯z=−argz]
=|z1||z2|cos(argz1−argz2)
Now, from equation (1)
|z1−z2|2=|z1|2+|z2|2−2|z1||z2|cos(θ1−θ2) …(2)
where θ1=arg(z1) and θ2=arg(z2).
We are given that |z1−z2|=||z1|−|z2||
Squaring both the sides
|z1−z2|2=||z1|−|z2||2
From equation (2)
|z1|2+|z2|2−2|z1||z2|cos(θ1−θ2)=|z1|2+|z2|2−2|z1||z2|
⇒cos(θ1−θ2)=1
⇒θ1−θ2=0
⇒argz1−argz2=0