The correct option is C 5π12
Given, z1+i¯¯¯¯¯¯¯¯¯(z2)=0
⇒z1=(−i)¯¯¯¯¯z2
Taking argument on both sides, we get
arg(z1)=arg{(−i)⋅¯¯¯¯¯z2}
⇒arg(z1)=arg(−i)+arg(¯¯¯¯¯z2) (by property)
⇒arg(z1)−arg(¯¯¯¯¯z2)=tan−1(−10)=−π2
⇒arg(z1)+arg(z2)=−π2.....(i)
[∵arg(¯¯¯z)=−arg(z)]
and arg(¯¯¯¯¯z1z2)=π3
⇒arg(¯¯¯¯¯z1)+arg(z2)=π3
⇒−arg(z1)+arg(z2)=π3...(ii)
On adding Eqs. (i) and (ii), we get
2arg(z2)=−π6
⇒arg(z2)=−π12
Therefore, from Eq. (i),
arg(z1)=−π2+π12=−5π12
⇒−arg(z1)=5π12
⇒arg(z1)=5π12.