Let z=x+iy
then z+¯¯¯z2=x
∴ from given relation
z+¯¯¯z=2|z−1|
⇒z+¯¯¯z2=|z−1|
⇒x=|x+iy−1|
⇒x=|(x−1)+iy|
⇒x2=(x−1)2+y2
⇒2x=1+y2
If z1=x1+iy1 and z2=x2+iy2 then
2x1=1+y21 ......... (1)
and 2x2=1+y22 .......... (2)
Subtracting (1) and (2), then
2(x1−x2)=y21−y22
2(x1−x2)=(y1+y2)(y1−y2) ......... (3)
But given arg(z1−z2)=π/4
tan−1(y1−y2x1−x2)=π/4
⇒y1−y2x1−x2=1
∴y1−y2=x1−x2 ....... (4)
∴ from (3) and (4) we get
y1+y2=2
∴Im(z1+z2)=2
Ans: 2