Let z=x+iy, z1=x1+iy1 and z2=x2+iy2
Given, z+¯z=2|z−1|
⇒(x+iy)+(x−iy)=2|x−1+iy|⇒2x=2√(x−1)2+y2
⇒x2=(x−1)2+y2⇒x2=x2+1−2x+y2
⇒2x=1+y2 ...(i)
Since, z1 and z2 both satisfy Eq. (i),
∴2x1=1+y12 and 2x2=1+y22
⇒2(x1−x2)=(y1+y2)(y1−y2)⇒2=(y1+y2)(y1−y2x1−x2) ...(ii)
Again, z1−z2=(x1−x2)+i(y1−y2)
∴tanθ=y1−y2x1−x2, where θ=arg(z1−z2)
⇒tanπ4=y1−y2x1−x2
⇒1=y1−y2x1−x2
From Eq. (ii), we get
2=y1+y2.
i.e., m(z1+z2)=2