Let z=x+iy
we have z+¯z=2|z−1|
⇒z+¯z2=|z−1|
⇒x=|x+iy−1|⇒x=|(x−1)+iy|
⇒x2=(x−1)2+y2⇒2x=1+y2
z1=x1+iy1,z2=x2+iy2
then 2x1=1+y21 …(1)
2x2=1+y22 …(2)
Subtract (2) from (1) to get,
2x1−2x2=y21−y22=(y1−y2)(y1+y2) …(3)
but given that
arg(z1−z2)=π4
⇒tanπ4=∣∣∣y1−y2x1−x2∣∣∣
As z1−z2 lies in first quadrant.
So, x1−x2>0, y1−y2>0
⇒1=y1−y2x1−x2
Thus (y1−y2)=(x1−x2) ⋯(4)
From (3) and (4), we get (y1+y2)=2
Thus, Im(z1+z2)=2