If |z1| is a complex number other than -1 such that |z1|=1 and z2=z1−1z1+1 , then show that the real parts of z2 is zero.
Let z1=x1+iy1, z2=x2+iy2|z1|=1⇒ x21+y21=1z2=z1−1z1+1x2+iy2=x1+iy1−1x1+iy1+1⇒ x2+iy2=x1−1+iy1x1+1+iy1⇒ x2+iy2=(x1−1+iy1)(x1+1−iy1)(x1+1+iy1)(x1+1−iy1) [Rationalizing the denominator]⇒ x2+iy2=(x1−1)(x1+1)−iy1(x1−1)+iy1(x1+1)+y21(x1+1)2−(iy1)2⇒ x2+iy2⇒ x21−1+y21−iy1x1+iy1+iy1x1+iy1(x1+1)2−(iy1)2⇒ x2+iy2=x21+y21−1+2iy1(x1+1)2−(iy1)2⇒ x2+iy2=1−1+2iy1(x1+1)2−(iy1)2 [∵ x21+y21=1]⇒ x2+iy2=2iy1(x1+1)2−(iy1)2 [∵ x21+y21=1]
Since there is no real part in the RHS, therefore, x2=0
The real part of the z2=0.