wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z1,z2andz3 are complex numbers such that |z1|=|z2|=|z3|=1z1+1z2+1z3=1, then find the value of |z1+z2+z3|.

Open in App
Solution

Any complex z number can be represented as
z=r×(cosθ+isinθ)=r×eiθ
if |z|=1,then z=(cosθ+isinθ)=eiθ
1z=eiθ=(cosθisinθ)
|cosθ+isinθ|=|cosθisinθ|=1
|1z1+1z2+1z3|=|(cosθ1+cosθ2+cosθ3)i(sinθ1+sinθ2+sinθ3)|=1
let C=(cosθ1+cosθ2+cosθ2+cosθ3),S=(sinθ1+sinθ2+sinθ3);
then,|1z1+1z2+1z3|=|CiS|
also ,|z1+z2+z3|=|C+iS|
we know that |C+iS|=|CiS|=C2+S2
so,|z1+z2+z3|=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon