If (z1, z2), and (z3, z4) are conjugate complex pairs then arg(z3z2)=
We have arg(z3z2)+arg(¯z3¯z2)=0
⇒arg(z3z2)+arg(z4z1)=0
⇒arg(z3z2)=−arg(z4z1)
⇒arg(z3z2)=arg(z1z4)
If z1,z2 and z3,z4 are two pairs of conjugate complex numbers, prove that arg(z1z4)+arg(z2z3)=0.
If (z1,z2) and (z3,z4) are two pairs of conjugate complex numbers, then show that
argz1z3+argz2z4=0.
If z1,z2 are conjugate complex numbers, and z3,z4 are also conjugate, then show that
argz3z2+argz1z4=0.
If |z1|=|z2|=|z3|=|z4|=1 and z1+z2+z3+z4=0 then least value of the expression E=|z1−z2|2+|z2−z3|2+|z3−z4|2+|z4−z1|2 is