The correct option is B 0
Let
z1=x1+iy1
z2=x2+iy2
z1+z2=(x1+x2)+i(y1+y2) ...(i)
Now
|z1+z2|=|z1|+|z2|
√(x1+x2)2+(y1+y2)2=√x21+y21+√x22+y22
Squaring both sides give us
(x1+x2)2+(y1+y2)2=(x1)2+(x2)2+(y1)2+(y2)2+2√x21+y21√x22+y22
(x1)2+(x2)2+(y1)2+(y2)2+2x1x2+2y1y2=(x1)2+(x2)2+(y1)2+(y2)2+2√x21+y21√x22+y22
2x1x2+2y1y2=2√x21+y21√x22+y22
(x1x2+y1y2)2=x21x22+y21y22+x21y22+y21x22
x21x22+y21y22+2x1x2y1y2=x21x22+y21y22+x21y22+y21x22
2x1x2y1y2=x21y22+y21x22
Or
x21y22+y21x22−2x1x2y1y2=0
Or
(x1y2−x2y1)2=0
Or
x1y2−x2y1=0
x1y2=x2y1
Or
x1y1=x2y2
Hence z1 and z2 are colinear.