If z1,z2 are the complex numbers such that |z1+z2|=|z1|+|z2| then arg z1−arg z2 is
We have,
|z1+z2| = |z1|+|z2|
Then, arg(z1)−arg(z2)
Letz1=cos θ1+i sin θ1
z2=cos θ2+i sin θ2
∴ |z1+z2| = |z1|+|z2|
⇒√(cos θ+cos θ2)2+(sin θ1+sin θ2)2 =|z1|+|z2|
|z1| = √cos2 θ1+sin θ1 =1
|z2| = √cos2 θ2+sin θ2 =1
Now, on squaring and we get.
⇒2[1+cos(θ1+θ2)]=(1+1)2\
⇒2+2 cos(θ1−θ2)=4
⇒2 cos(θ1−θ2)=2
⇒ cos(θ1−θ2)=1
⇒ cos(θ1−θ2)=cos 00
⇒θ1−θ2=00
arg z1−arg z2=0
Hence, this is the
answer.