If z1,z2 are the non zero complex root of z2−ax+b=0 such that |z1|=|z2|, where a,b are complex numbers. If A(z1),B(z2) and ∠AOB=θ, ′O′ being the origin then a2=4bcos2θ2.
A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A True z2−ax+b=0 z1,z2aretheroots z1+z2=a z1z2=b.......(i) sinceθisanglebetweenz1andz2 Hence z2=z1eiθ pluggingin(i) z21eiθ=b............(ii) z1+z1eiθ=a ⇒z1(1+eiθ)=a ⇒z1=a1+eiθ from(ii) beiθ=a2(1+eiθ)2 =a21+e2iθ+2eiθ =a21+cos2θ+isin2θ+2(cosθ+isinθ) =a22cos2θ+i2sinθcosθ+2(cosθ+isinθ) beiθ=a22(cos2θ+isinθ)cosθ+2(cosθ+isinθ) ⇒b=a22cosθ+2 ⇒b=a22[1+cosθ]=a22[2cos2θ/2]=a24cos2θ2 ⇒a2=4bcos2θ2 Hencethegivenstatementistrue