wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z1, z2 are the non zero complex root of z2ax+b=0 such that |z1|=|z2|, where a, b are complex numbers. If A(z1), B(z2) and AOB=θ, O being the origin then a2=4bcos2θ2.

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
z2ax+b=0
z1,z2aretheroots
z1+z2=a
z1z2=b.......(i)
sinceθisanglebetweenz1andz2
Hence
z2=z1eiθ
pluggingin(i)
z21eiθ=b............(ii)
z1+z1eiθ=a
z1(1+eiθ)=a
z1=a1+eiθ
from(ii)
beiθ=a2(1+eiθ)2
=a21+e2iθ+2eiθ
=a21+cos2θ+isin2θ+2(cosθ+isinθ)
=a22cos2θ+i2sinθcosθ+2(cosθ+isinθ)
beiθ=a22(cos2θ+isinθ)cosθ+2(cosθ+isinθ)
b=a22cosθ+2
b=a22[1+cosθ]=a22[2cos2θ/2]=a24cos2θ2
a2=4bcos2θ2
Hencethegivenstatementistrue

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Vector Addition
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon