The correct option is
C −2tan−1kInterpreting according Coni's theorem.
Let the angle between the lines joining z1,z2 and z1,−z2 be α
∴∣∣∣z1−z2z1+z2∣∣∣=cosα+isinα
Using componendo and dividendo, we have
2z1−2z1=1+cosα+isinαcosα−1+isinα
⇒z1z2=2cos2(α2)+i2sin(α2)cos(α2)−2sin2(α2)+isin(α2)cos(α2)
⇒z1z2=−cot(α2)⇒iz1=−cot(α2)z2
But iz1−kz2 {where, k=−cot(α2)(say)}
Now, k=−cot(α2)⇒cot(α2)=−k⇒tanα=2kk2−1
⇒tanα=−2k1−k2⇒α=tan−1(−2k1−k2)=−2tan−1k
Now, z1−z2z1+z2=cosα+isinα
where α is the angle between (z1−z2) and (z1+z2)
⇒α=−2tan−1k is the angle between (z1−z2) and (z1+z2).