wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z1, z2 are two complex numbers such that |z1|=|z2|=2 and argz1+argz2=0 then z1z2=

Open in App
Solution

Let z1=|z1|(cosθ+isinθ) where θ=arg(z1)and
z2=|z2|(cosϕ+isinϕ) where ϕ=arg(z2)
It is given that argz2=argz1ϕ=θ and |z1|=|z2|
So z2=|z1|(cos(θ)+isin(θ))
z2=|z1|(cosθisinθ)
z2=¯¯¯¯¯z1z1z2=¯¯¯¯¯z2z2=|z2|2=4

Alternate Solution
argz1+argz2=0
arg(z1z2)=0
So, z1z2=k, (k>0)
Now, |z1z2|=k
k=|z1||z2|=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon