Let z1=|z1|(cosθ+isinθ)
Where θ=arg(z1)
z2=|z2|(cosϕ+isinϕ)
Where ϕ=arg(z2)
It is given that argz2=−argz1⇒ϕ=−θ
Also,
|z1|=|z2|z2=|z1|[cos(−θ)+isin(−θ)]⇒z2=|z1|(cosθ−isinθ)⇒z2=¯¯¯¯¯z1⇒z1=¯¯¯¯¯z2⇒z1z2=¯¯¯¯¯z2z2=|z2|2=4
Alternate Solution :
argz1+argz2=0⇒arg(z1z2)=0∴z1z2=k, (k>0)
Now,
|z1z2|=k∴k=|z1||z2|=4