If z1,z2 are two complex numbers (z1≠z2) satisfying ∣∣z21−z22∣∣=∣∣¯¯¯z21+¯¯¯z22−2¯¯¯z1¯¯¯z2∣∣, then
A
z1z2 is purely imaginary
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
z1z2 is purely real
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
|argz1−argz2|=π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
|argz1−argz2|=π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Az1z2 is purely imaginary C|argz1−argz2|=π2 ∣∣z12−z22∣∣=∣∣¯z12+¯z22−2¯z1¯z2∣∣⟹∣∣z12−z22∣∣=∣∣(¯z1−¯z2)2∣∣=∣∣(z1−z2)2∣∣⟹|z1−z2||z1+z2|=|z1−z2||z1−z2|∵z1≠z2∴|z1+z2|=|z1−z2|⟹∣∣z1z2+1∣∣=∣∣z1z2−1∣∣⟹Re(z1z2)=0∴z1z2ispurelyimaginary.&∣∣argz1z2∣∣=Π2 Ans: A & D