If z1,z2 are two complex numbers (z1≠z2) satisfying |z21−z22|=|¯¯¯¯¯z21+¯¯¯¯¯z22−2¯¯¯z1¯¯¯z2|, then
A
z1z2 is purely imaginary
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
z1z2 is purely real
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
|argz1−argz2|=π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
|argz1−argz2|=π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Az1z2 is purely imaginary D|argz1−argz2|=π2 |z21−z22|=|¯¯¯z21+¯¯¯z21−2¯¯¯z1¯¯¯z2| or |z1−z2||z1+z2|=|¯¯¯z1−¯¯¯z2|2 or |z1+z2|=|¯¯¯z1−¯¯¯z2| |z1+z2|=|z1−z2| ⇒∣∣∣z1z2+1∣∣∣=∣∣∣z1z2−1∣∣∣ ⇒z1z2 lies on ⊥ bisector of 1 and -1 ⇒z1z2 lies on imaginary axis ⇒z1z2 is purely imaginary ⇒arg(z1z2)=±π2 |arg(z1)−arg(z2)|=π2