If z1,z2 are two different complex numbers satisfying |z21−z22|=|¯¯¯z21+¯¯¯z22−2¯¯¯z1¯¯¯z2|, then
A
z1z2 is purely imaginary.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
z1z2 is purely real.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
|argz1−argz2|=π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
|argz1−argz2|=π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Az1z2 is purely imaginary. D|argz1−argz2|=π2 Given : |z21−z22|=|¯¯¯z21+¯¯¯z22−2¯¯¯z1¯¯¯z2| ⇒|z1−z2||z1+z2|=|¯¯¯z1−¯¯¯z2|2⇒|z1−z2||z1+z2|=|¯¯¯z1−¯¯¯z2||z1−z2|⇒|z1+z2|=|¯¯¯z1−¯¯¯z2|⇒|z1+z2|=|z1−z2|⇒∣∣∣z1z2+1∣∣∣=∣∣∣z1z2−1∣∣∣
z1z2 lies on the perpendicular bisector of the line segment joining the points (1,0) and (−1,0) So, Re(z1z2)=0 Therefore, arg(z1z2)=±π2⇒|arg(z1)−arg(z2)|=π2