If z1z2 be two distinct complex numbers and let z = (1 - t) z1 + tz2 for some real number t with 0 < t < 1. If arg (ω) denotes the principal argument of a non-zero complex number (ω), then
A
|z−z1|+|z−z2|=|z2−z1|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
arg(z−z1)=arg(z−z2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
∣∣∣z−z1¯z−¯z1z2−z1¯z2−¯z1∣∣∣
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
arg(z−z1)=arg(z2−z1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B|z−z1|+|z−z2|=|z2−z1| Given equation: z=(1−t)z1+tz2
So we can write, |z−z1|=t|z2−z1|=t|z1−z2| -------(1)