The correct option is A 0
As z1,z2,⋯zn lie on the circle |z|=2,
|zi|=2⇒|zi|2=4
⇒zi¯¯¯zi=4 for i=1,2,3,⋯,n
Thus 1zi=14¯¯¯zi for i=1,2,⋯,n.
So, |z1+z2+⋯+zn|−4∣∣∣1z1+1z2+⋯+1zn∣∣∣
⇒|z1+z2+⋯+zn|−4∣∣∣14¯¯¯z1+14¯¯¯z1+⋯+14¯¯¯zn∣∣∣
=|z1+z2+⋯+zn|−∣∣¯¯¯z1+¯¯¯z1+⋯+¯¯¯zn∣∣
=|z1+z2+⋯+zn|−∣∣¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1+z1+⋯+zn∣∣
=0 [∵|z|=|¯¯¯z|]