If z1,z2 and z3,z4 are two pairs of conjugate complex numbers, prove that arg(z1z4)+arg(z2z3)=0.
z1,z2 are conjugates implies z2=¯¯¯¯¯z1
z3,z3 are conjugates implies z4=¯¯¯¯¯z3
Alos we know that arg(z1)+arg(¯¯¯¯¯z1)=0\\
arg(z1z4)+arg(z2z3)=0.
=arg(z1)−arg(z4)+arg(z2)−arg(z3) [∵ arg(z1z2)=arg(z1)−arg(z2)]=arg(z1)−arg(¯¯¯¯¯z3)+arg(¯¯¯¯¯z1)−arg(z3)=arg(z1)+arg(¯¯¯¯¯z1)−arg(¯¯¯¯¯z3)−arg(z3)=arg(z1)+arg(¯¯¯¯¯z1)−[arg(¯¯¯¯¯z3)+arg(z3)] [∵ arg(z1)+arg(¯¯¯¯¯z1)=0]=0+0=0