wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z1,z2 and z3,z4 are two pairs of conjugate complex numbers, prove that arg(z1z4)+arg(z2z3)=0.

Open in App
Solution

z1,z2 are conjugates implies z2=¯¯¯¯¯z1

z3,z3 are conjugates implies z4=¯¯¯¯¯z3

Alos we know that arg(z1)+arg(¯¯¯¯¯z1)=0\\

arg(z1z4)+arg(z2z3)=0.

=arg(z1)arg(z4)+arg(z2)arg(z3) [ arg(z1z2)=arg(z1)arg(z2)]=arg(z1)arg(¯¯¯¯¯z3)+arg(¯¯¯¯¯z1)arg(z3)=arg(z1)+arg(¯¯¯¯¯z1)arg(¯¯¯¯¯z3)arg(z3)=arg(z1)+arg(¯¯¯¯¯z1)[arg(¯¯¯¯¯z3)+arg(z3)] [ arg(z1)+arg(¯¯¯¯¯z1)=0]=0+0=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon