If |z1+z2|=|z1|+|z2| where z1 and z2 are different non - zero complex number, then ?
A
Re(z1z2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
Im(z1z2)=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
z1+z2=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CRe(z1z2)=0 letz1=a+ibandz2=c+id⇒|z1+z2|=|z1|+|z2|⇒|a+ib+c+id|=|a+ib|+|c+id|⇒|a+c+i(b+d)|=|a+ib|+|c+id|⇒√(a+c)2+(b+d)2=√a2+b2+√c2+d2squaringbothsides⇒(a+c)2+(b+d)2=a2+b2+c2+d2+2√a2+b2.√c2+d2⇒2ac+2bd=2√a2+b2.√c2+d2⇒ac+bd=√a2+b2.√c2+d2againsquaringbothsides⇒(ac)2+(bd)2+2abcd=(a2+b2)(c2+d2)⇒(ac)2+(bd)2+2abcd=(ac)2+(ad)2+(bc)2+(bd)2⇒(ad)2+(bc)2−2abcd=0⇒(ad−bc)2=0⇒ad−bc=0ad=bc⟶(1)Nowz1z2=a+ibc+id=(a+ib)(c−id)(c+id)(c−id)=ac−iad+ibc−i2bdc2+d2=ac+bd+i(bc−ad)c2+d2=ac+bdc2+d2+0usingequation(1)Imaginarypartiszeroasthereisonlyrealpart∴Im(z1z2)=0