If z1+z2+z3=0, then |z2−z3|2+|z3−z1|2+|z1−z2|2 equals
A
13|z1|2+2|z2|2+2|z3|2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
23(|z1|2+|z2|2+|z3|2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2(|z1|2+|z2|2+|z3|2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3(|z1|2+|z2|2+|z3|2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D3(|z1|2+|z2|2+|z3|2) Given that, z1+z2+z3=0....(1) Let a=|z2−z3|2+|z3−z1|2+|z1−z2|2 ⇒a=(z2−z3)(¯z2−¯z3)+(z3−z1)(¯z3−¯z1)+(z1−z2)(¯z1−¯z2) ⇒a=2(|z2|2+|z3|2+|z1|2)−[¯z2(z1+z3)+¯z3(z1+z2)+¯z1(z3+z2)] ⇒a=2(|z2|2+|z3|2+|z1|2)+(¯z2z2+¯z3z3+¯z1z1)....[ Using (1)]