If |z1|=|z2|=|z3|=1 and z1+z2+z3=0
then area of the triangle whose vertices are z1,z2,z3 is
3√34
z1+z2+z3=0⇒¯z1+¯z2+¯z3=0 ...(1)
⇒1z1+1z2+1z3=0 (∵|z1|=|z2|=|z3|=1)⇒z2z3+z3z1+z1z2=0 ...(2)
Let z1z2z3=d|z1||z2||z3|=|d|=1
Note that z1,z2,z3 are roots of the equation
(z−z1)(z−z2)(z−z3)=0
or z3−d=0 (3)
[using (1)and (2)]
If α is a root of (3), then other two roots of (3) are α w and αw2
Also, α3−d=0⇒|α|3=|d|=1⇒|α|=1
Let z1=α,z2=αw and z3=αw2
Area of Δ whose vertices are z1,z2 and z3 is
Δ=−14i∣∣
∣
∣∣α¯α1αw¯αw21αw2¯αw1∣∣
∣
∣∣=i4(α¯α)∣∣
∣
∣∣111ww21w2w1∣∣
∣
∣∣=34|w−w2|=34∣∣∣−12+√3i2−(−12+−√3i2)∣∣∣=3√34