The correct option is B π
z6=(z+1)6
⇒(z+1z)6=1=ei2kπ
⇒z+1z=eikπ/3, k=0,1,2,3,4,5
⇒z=1eikπ/3−1
=1coskπ3+isinkπ3−1
=1−2sin2kπ6+i2sinkπ6⋅coskπ6
=1−2sinkπ6(sinkπ6−icoskπ6)
=sinkπ6+icoskπ6−2sinkπ6
=−12(1+icotkπ6)
So, all the roots lie on the line x=−12 in Argand plane.
Thus, roots of z6=(z+1)6 are collinear.
⇒arg(z1−z3z2−z3)=0 or π