If z1,z2,z3 are complex numbers such that 2z1=1z2+1z3.
Then prove that the points represented by z1,z2,z3 lie on a circle passing through the origin.
Open in App
Solution
2z1=1z2+1z3 or 1z1−1z2=1z3−1z1 or z2−z1z1z2=z1−z3z3z1 or z2−z1z3−z1=z2z3 ⟹arg(z2−z1z3−z1)=arg(−z2z3) arg(z2−z1z3−z1)=π+arg(z2z3) or arg(z2−z1z3−z1)=π−arg(z2z3) or ⟹α=π−β or α+β=π Hence, the given points are concyclic. Ans: 1