If z1,z2,z3 are three complex numbers, prove that z1Im(¯z2z3)+z2Im(¯z3z1)+z3Im(¯z1z2)=0 where Im(w)= imaginary part of w,w being a complex number.
Open in App
Solution
z1=x1+iy1,z2z3=(x2+iy2)(x3+iy3) ∴Im(¯z2z3)=(x2y3−x3y2) ∴z1Im(¯z2z3)=(x1+iy1)(x2y3−x3y2) =x1(x2y3−x3y2)+iy1(x2y3−x3y2) ∴∑z1Im(¯z2z3)=0 Each sigma will have six terms, three +ive and three −ive which will cancel.