If z1,z2,z3 be the vertices of an rightangled isosceles triangle and which is right angled at z2 then z21+z23+2z22=kz2(z1+z3) where k=
Open in App
Solution
From above diagram |z1−z2|=|z3−z2|=r Now using the rotation of point A(z1) about point B(z2) will be come C(z3) Hence z3−z2=eiπ/2(z1−z2)=iz1−iz2 ⇒z23+z32−2z2z3=−z21−z22+2z1z2⇒z21+z23+2z22=2z2(z1+z3) ∴k=2