If z1,z2,z3 be the vertices of an rightangled isosceles triangle and which is right angled at z2 then z21+z23+2z22=kz2(z1+z3) where k=
Open in App
Solution
From above diagram |z1−z2|=|z3−z2|=r
Now using the rotation of point C(z3) about point B(z2) will be come A(z1)
Hence z1−z2z3−z2=eiπ/2 ⇒z1−z2=i(z3−z2) ⇒z21+z22−2z1z2=−z23−z22+2z3z2⇒z21+z23+2z22=2z2(z1+z3) ∴k=2